a2 United States Patent

Miadowicz et al.

US009207914B2

(10) Patent No.: US 9,207,914 B2
(45) Date of Patent: Dec. 8, 2015

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

(56)

EXECUTION GUARDS IN DYNAMIC
PROGRAMMING

Applicant: Microsoft Corporation, Redmond, WA
(US)

Inventors: Jedrzej Miadowicz, Redmond, WA
(US); Curtis Cheng-Cheng Man,
Seattle, WA (US); Louis Lafreniere,
Seattle, WA (US)

Assignee: Microsoft Technology Licensing, LL.C,
Redmond, WA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/137,356

Filed: Dec. 20, 2013

Prior Publication Data

US 2015/0178051 Al Jun. 25, 2015

Int. Cl1.

GO6F 9/44 (2006.01)

GO6F 9/455 (2006.01)

U.S. CL

CPC ... GO6F 8/31 (2013.01); GOGF 9/4431

(2013.01); GOGF 9/4552 (2013.01); GO6F
9/45504 (2013.01); GOGF 9/45529 (2013.01)
Field of Classification Search
USPC e 717/118
IPC GOGF 8/61
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,996,804 B2 2/2006 Stoodley
7,493,610 Bl 2/2009 Onodera et al.

7,526,760 Bl 4/2009 Daynes et al.
8,244,775 Bl 8/2012 Bak et al.
8,392,881 Bl 3/2013 Lund et al.

8,522,222 B2* 82013 Tillmann ... 717/148
8,539,463 B2 9/2013 Deetal.
2005/0138611 Al* 6/2005 Inglisetal. 717/151

2012/0185822 Al 7/2012 Leeetal.
2012/0297360 Al 11/2012 Lucco et al.

2012/0311535 Al* 12/2012 Fanningetal. ... 717/123
2013/0061128 Al 3/2013 Lucco et al.

2013/0067441 Al* 3/2013 Lafreniereetal. 717/139
2013/0159968 Al* 6/2013 Jazdzewskietal. ... 717/114

2013/0205281 Al 8/2013 Pizlo et al.
2013/0205282 Al 8/2013 Lafreniere et al.
2013/0205285 Al 8/2013 Pizlo

(Continued)
OTHER PUBLICATIONS

Mehrara, et al., “Dynamically Accelerating Client-side Web Appli-
cations through Decoupled Execution”, In Proceedings of the 9th
Annual IEEE/ACM International Symposium on Code Generation
and Optimization, Apr. 2, 2011, 11 Pages.

(Continued)

Primary Examiner — Philip Wang
(74) Attorney, Agent, or Firm — Kevin Sullivan; Raghu
Chinagudabha; Micky Minhas

(57) ABSTRACT

A method for executing a machine code based on a dynamic
language is disclosed. An execution guard is created as a
value stored in a data structure. The value is representative of
an expected condition or a set of conditions for a reusable
portion of the machine code. The value representative of the
expected condition(s) is compared to an actual value encoun-
tered later during execution of a portion of the machine code.
The reusable machine code is executed if the actual value
corresponds with the value representative of the expected
condition(s). The execution guard is invalidated if any of the
expected conditions changes.

20 Claims, 3 Drawing Sheets

GREATE EXEGUTION GUARD]

18 EXECUTION
GUARD VALIDT

306

EXECUTE MACHINE
CODE

NO

BALL OUT

US 9,207,914 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2013/0205286 Al*
2013/0205388 Al
2013/0212567 Al
2013/0305230 Al
2013/0339936 Al
2014/0181591 Al
2015/0067658 Al
2015/0178057 Al

OTHER PUBLICATIONS

8/2013 Barraclough etal. 717/151
8/2013 Hunt et al.
8/2013 Fisher et al.
11/2013 Inoue
12/2013 Boulos et al.
6/2014 Bijanki et al.
3/2015 Hahnenberg
6/2015 Miadowicz

Chang, et al., “Efficient Just-In-Time Execution of Dynamically
Typed Languages via Code Specialization Using Precise Runtime
Type Inference”, In Technical Report ICS-TR-07-10, Retrieved on:
Oct. 3, 2013, 14 pages.

Gal, et al., “Trace-based Just-in-Time Type Specialization for
Dynamic Languages”, In Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, Jun.
15, 2009, 14 pages.

Schneider, et al., “The Efficient Handling of Guards in the Design of
RPython’s Tracing JIT”, In Proceedings of the Sixth ACM Workshop
on Virtual Machines and Intermediate Languages, Oct. 26, 2013, 10
pages.

Schilling, Thomas, “Trace-based Just-in-time Compilation for
Haskell”, Published on: Oct. 12, 2013, Available at: http://www.cs.
uu.nl/wiki/pub/Swierstra/StudentResearchCompetition/
ThomasSchilling.pdf.

“International Search Report & Written Opinion Issued in PCT
Patent Application No. PCT/US2014/071003”, Mailed Date: May
12,2015, 10 Pages.

“Advances in JavaScript Performance in IE10 and Windows 8, Pub-
lished on: Jun. 14, 2012, Available at: http://blogs.nnsdn.com/b/ie/
archive/2012/06/13/advances-in-javascript-performance-in-ie10-
and-windows-8.aspx.

Castanos, et al., “On the Benefits and Pitfalls of Extending a Stati-
cally Typed Language JIT Compiler for Dynamic Scripting Lan-
guages”, In Proceedings of the ACM International conference on
Object Oriented Programming Systems Languages and Applications,
vol. 47, Issue 10, Oct. 19, 2012, pp. 195-212.

International Search Report and Written Opinion, PCT/US2014/
068680, mailed May 11, 2015, 13 pages.

Michael Bebenita et al: “SPUR: a trace-based JIT compiler for CIL”,
Proceedings of the 2009 ACM Sigplan Conference on Programming
Language Design and Implementation, PLDI *09, vol. 45, No. 10,
Oct. 17, 2010, pp. 708-725, XP055150227, New York, New York,
USA, ISSN: 0362-1340, DOI: 10.1145/1932682.1869517, ISBN:
978-1-60-558392-1.

Kazuaki Ishizaki et al: “Adding dynamically-typed language support
to a statically-typed language compiler: Performance Evaluation,
Analysis, and Tradeoffs”, Proceedings of the 8TH ACM SIGPLAN/
SIGOPS Conference on Virtual Execution Environments, Vee *12,
vol. 47, Jul. 7, 2012, pp. 169-180, XP055148922, New York, New
York, USA, Doi: 10.1145/2151024.2151047, ISBN: 978-1-45-
031176-2.

Li, et al., “TypeCastor: Demystify Dynamic Typing of JavaScript
Applications”, In Proceedings of the 6th International Conference on
High Performance and Embedded Architectures and Compilers, Jan.
24,2011, pp. 55-65.

Pizlo, Filip, “Introducing the WebKit FTL JIT”, Published on: May
13, 2014, retrieved from https://www.webkitorg/blog/3362/introduc-
ing-the-webkit-ftl-jit/, 14 pages.

Ahn, et al., “Improving JavaScript Performance by Deconstructing
the Type System”, in Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, Jun.
9, 2014, 12 pages.

Holzle, et al., “Optimizing Dynamically-Typed Object-Oriented
Languages With Polymorphic Inline Caches”, ECOOP *91 proceed-
ings, Springer Verlag Lecture Notes in Computer Science 512, Jul.
1991, 18 pages.

Jay Conrad, “Polymorphic Inline Caches explained”, retrieved from
http://jayconrod.com/posts/44/polymorphic-inlinecaches-ex-
plained, Jul. 24, 2011, 3 pages.

“Type system”, retrieved from http://en. wikipedia.org/wiki/Type__
system, Sep. 12, 2014, 8 pages.

“Inline caching”, retrieved from http://en.wikipedia.org/wiki/
Inline caching, May 11, 2014, 4 pages.

The Notice of Allowance for U.S. Appl. No. 14/490,429 mailed Apr.
22,2015 (15 pages).

* cited by examiner

US 9,207,914 B2

Sheet 1 of 3

Dec. 8, 2015

U.S. Patent

naon ana nanee wann mnan oonec oo Mnan onn naom Aane anan Ann Anam nonae Maann onan Aonn naane Mnan annn nAnm Anane anan ann Ao nonae aannn nan Aonn nanne Mann anan nane Aane et

SNOLLYD!ddY | (SINCILDINNOD
/SYILNdINDD N NOLIYIINNIAWOD
H3HLO H3HLO

ol
ol (SJIOIAZT LNdNI
T~
i
I
!
e ($J301A30 1ndLNO
i
I
m JOVHOLS
Q:/..w\\\) JIGVAONTA-NON
| JOVHOLS
B0l | FIEVAOHIY

"SI
FHIVIOANON
SLINM BNISSH30Hd TIIVIOA
— AHOWAW WLSAS
ot
P
01
33IA30 ONILAINGD
00 w\\x 901

U.S. Patent Dec. 8, 2015 Sheet 2 of 3 US 9,207,914 B2

202
sourcecobe N
220
- EXECUTION
‘\" 212 257
* 4 ’
2%" PARSER BYTE CODE INTERPETER EX%?S%!E}N
GENERATOR Y 7y
\ 4 A 4
206 SE;%;EED MACHINE
4 . e | | E | [T
214 Vi
210 JUST-IN-TIVME
COMPILER

200 /]
J 218

Fig. 2

U.S. Patent Dec. 8, 2015 Sheet 3 of 3 US 9,207,914 B2

300

QA 302

CREATE EXECUTION GUARD L)

308
NG
IS EXECUTION
GUARD VALIDY BAIL OQUT

306

EXECUTE MACHINE
CODE

Fig. 3

US 9,207,914 B2

1
EXECUTION GUARDS IN DYNAMIC
PROGRAMMING

BACKGROUND

Dynamic languages have become ubiquitous in web pro-
gramming. As an example, JavaScript has become the lan-
guage of choice for client-side applications because of its
flexibility, ease of prototyping, and portability. As web appli-
cations become more complex, computations are increas-
ingly being delegated to the client-side to reduce network
traffic and to improve user experience. JavaScript has also
become common in server-side programming, game devel-
opment, and the creation of desktop applications for a variety
of reasons such as JavaScript programs can be easily distrib-
uted.

In JavaScript, and other dynamic languages, variable types
can be changed at runtime. Thus, dynamic language compil-
ers, or engines, typically do not generate machine code speci-
fied for a type. Instead, dynamic language compilers typically
emit a generic code, or bytecode, that is adapted to run with
various type combinations. In contrast, programs written in
more traditional languages, such as C or C++, include type
information, and compilers can provide generalized machine
code for a specified type. The bytecode from dynamic lan-
guage compilers is executed through interpreters, which can
be significantly slower than the execution of machine code for
a specified type. Performance inefficiencies of simple
dynamic language scripts are relatively unnoticeable to a
user. In more computational intensive applications, however,
these performance inefficiencies can adversely affect user
experience.

Due in part to the ubiquity of dynamic languages in web
programming, dynamic compilers or engines are being devel-
oped to reduce inefficiencies associated with executing
generic code through interpreters. Some optimizing engines
attempt to identify sequences of type-stable bytecode and
compile them into type-specific machine code. This provides
for efficient execution of the bytecode sequence while condi-
tions remain as expected. If the engine encounters an unex-
pected condition, a helper routine can bailout from the type-
specific machine code and return to using the interpreter for
the bytecode. Mechanisms currently used to determine
whether a condition is expected, however, can significantly
increase overhead and reduce performance efficiency.

SUMMARY

This summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

This disclosure relates to a method for executing a machine
code based on a dynamic language, such as JavaScript. An
execution guard is created as a value stored in a data structure.
The value is representative of an expected condition for a
reusable portion of the machine code. The value representa-
tive of the expected condition is compared to an actual value
encountered later during execution of a portion of the
machine code. The reusable machine code is executed if the
actual value corresponds with the value representative of the
expected condition. The execution guard is invalidated if the
actual value does not correspond with the value representative
of'the expected condition. The method can be implemented as

30

40

45

50

55

2

part of an engine including a just-in-time compiler. In one
example, the method is implemented in a run-time environ-
ment such as a web browser.

In many circumstances a single execution guard can be
used to simultaneously check several expected conditions
such as an object’s type and attributes of an object’s proper-
ties. If one condition is not as expected, the execution guard is
invalidated for all of the conditions it is designed to check.
Execution guards can be implemented when loading a prop-
erty from a prototype, when adding a property or set of
properties to an object, when calling or entering inline code of
amethod, and when constructing an object, among other uses.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are included to provide a
further understanding of embodiments and are incorporated
in and constitute a part of this specification. The drawings
illustrate embodiments and together with the description
serve to explain principles of embodiments. Other embodi-
ments and many of the intended advantages of embodiments
will be readily appreciated, as they become better understood
by reference to the following detailed description. The ele-
ments of the drawings are not necessarily to scale relative to
each other. Like reference numerals designate corresponding
similar parts.

FIG. 1 is a block diagram illustrating an example of a
computing device.

FIG. 2 is a block diagram illustrating an example dynamic
language engine that can be configured to run on a computing
device of FIG. 1.

FIG. 3 is ablock diagram illustrating an example method of
executing a machine code compiled from a dynamic lan-

guage.
DETAILED DESCRIPTION

Inthe following Detailed Description, reference is made to
the accompanying drawings, which form a part hereof, and in
which is shown by way of illustration specific embodiments
in which the invention may be practiced. It is to be understood
that other embodiments may be utilized and structural or
logical changes may be made without departing from the
scope of the present invention. The following detailed
description, therefore, is not to be taken in a limiting sense,
and the scope of the present invention is defined by the
appended claims. It is to be understood that features of the
various exemplary embodiments described herein may be
combined with each other, unless specifically noted other-
wise.

FIG. 1 illustrates an exemplary computer system that can
be employed in an operating environment and used to host or
run a computer application included on one or more computer
readable storage mediums storing computer executable
instructions for controlling the computer system, such as a
computing device, to perform a process.

The exemplary computer system includes a computing
device, such as computing device 100. In a basic hardware
configuration, computing device 100 typically includes a pro-
cessor system having one or more processing units, i.e., pro-
cessors 102, and memory 104. By way of example, the pro-
cessing units may include, but are not limited to, two or more
processing cores on a chip or two or more processor chips. In
some examples, the computing device can also have one or
more additional processing or specialized processors (not
shown), such as a graphics processor for general-purpose
computing on graphics processor units, to perform process-

US 9,207,914 B2

3

ing functions offloaded from the processor 102. The memory
104 may be arranged in a hierarchy and may include one or
more levels of cache. Depending on the configuration and
type of computing device, memory 104 may be volatile (such
as random access memory (RAM)), non-volatile (such as
read only memory (ROM), flash memory, etc.), or some com-
bination of the two. The computing device 100 can take one or
more of several forms. Such forms include a tablet, a personal
computer, a workstation, a server, a handheld device, a con-
sumer electronic device (such as a video game console or a
digital video recorder), or other, and can be a stand-alone
device or configured as part of a computer network, computer
cluster, cloud services infrastructure, or other.

Computing device 100 can also have additional features or
functionality. For example, computing device 100 may also
include additional storage. Such storage may be removable
and/or non-removable and can include, but is not limited to,
magnetic or optical disks or solid-state memory, or flash
storage devices such as removable storage 108 and non-re-
movable storage 110. Computer storage media includes vola-
tile and nonvolatile, removable and non-removable media
implemented in any suitable method or technology for stor-
age of information such as computer readable instructions,
data structures, program modules or other data. Memory 104,
removable storage 108 and non-removable storage 110 are all
examples of computer storage media. Computer storage
media includes, but is not limited to, RAM, ROM, EEPROM,
flash memory or other memory technology, CD-ROM, digital
versatile discs (DVD) or other optical storage, magnetic cas-
settes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, universal serial bus (USB) flash drive,
flash memory card, or other flash storage devices, or any other
storage medium that can be used to store the desired infor-
mation and that can be accessed by computing device 100.
Computer storage media does not include a transitory propa-
gating signal. Any such computer storage media may be part
of computing device 100.

Computing device 100 often includes one or more input
and/or output connections, such as USB connections, display
ports, proprietary connections, and others to connect to vari-
ous devices to provide inputs and outputs to the computing
device. Input devices 112 may include devices such as key-
board, pointing device (e.g., mouse), pen, voice input device,
touch input device, or other. Output devices 111 may include
devices such as a display, speakers, printer, or the like.

Computing device 100 often includes one or more com-
munication connections 114 that allow computing device 100
to communicate with other computers/applications 115.
Example communication connections can include, but are not
limited to, an Ethernet interface, a wireless interface, a bus
interface, a storage area network interface, a proprietary inter-
face. The communication connections can be used to couple
the computing device 100 to a computer network, which can
be classified according to a wide variety of characteristics
such as topology, connection method, and scale. A network is
a collection of computing devices and possibly other devices
interconnected by communications channels that facilitate
communications and allows sharing of resources and infor-
mation among interconnected devices. Examples of com-
puter networks include a local area network, a wide area
network, the Internet, or other network.

Computing device 100 can be configured to run an operat-
ing system software program and one or more computer
applications, which make up a system platform. A computer
application configured to execute on the computing device
100 includes at least one process (or task), which is an execut-
ing program. Each process provides the resources to execute

10

15

20

25

30

35

40

45

50

55

60

65

4

the program. One or more threads run in the context of the
process. A thread is the basic unit to which an operating
system allocates time in the processor 102. The thread is the
entity within a process that can be scheduled for execution.
Threads of a process can share its virtual address space and
system resources. Each thread can include exception han-
dlers, a scheduling priority, thread local storage, a thread
identifier, and a thread context, or thread state, until the thread
is scheduled. A thread context includes the thread’s set of
machine registers, the kernel stack, a thread environmental
block, and a user stack in the address space of the process
corresponding with the thread. Threads can communicate
with each other during processing through techniques such as
message passing.

An operation may execute in a thread separate from the
main application thread. When an application calls methods
to perform an operation, the application can continue execut-
ing on its thread while the method performs its task. Concur-
rent programming for shared-memory multiprocessors can
include the ability for multiple threads to access the same
data. The shared-memory model is the most commonly
deployed method of multithread communication. Multiple
threads execute on multiple processors, multiple processor
cores, multiple logical nodes in a single processor core, and/
or other classes of parallelism that are attached to a memory
shared between the processors.

A computer application configured to execute on the com-
puting device 100 is typically provided as set of instructions
written in a programming language, such as a dynamic pro-
gramming language. The term “dynamic programming lan-
guage” is used to describe a class of high-level programming
languages that, at runtime, execute many common behaviors
that other languages might perform during pre-runtime com-
pilation, i.e., compile-time. These behaviors could include
extension of the program, by adding new code, by extending
objects and definitions, or by modifying the type system, all
during program execution. In this disclosure, a dynamic pro-
gramming language includes types that are associated with
values, not with variables. A value is an expression that can-
not be evaluated any further, and a variable is a storage loca-
tion and an associated symbolic name, such as an identifier,
that can contain some known or unknown quantity or infor-
mation such as a value. In a dynamic language, for example,
a variable could be bound to a number and then later rebound
to a string. Also, a type or object system can be modified
during runtime in a dynamic language as used in this disclo-
sure. This can mean generating new objects from a runtime
definition or based on mixins of existing types or objects. This
can also mean changing the inheritance or type tree and
altering the way that existing types behave, e.g., with respect
to the invocation of methods.

Although many of the examples in this disclosure relate to
JavaScript, those skilled in the art recognize that the examples
can also be implemented in other dynamic programming
languages. Some popular examples of dynamic languages
within this definition include the forms of ECMAScript (such
as ActionScript, JavaScript, and JScript), PHP, Python, Perl,
Ruby, VBScript, Common Lisp, and others.

FIG. 2 illustrates an example dynamic language engine
200. The engine 200 can be implemented as a web browser
subsystem, a feature of the operating system, or other com-
puter application. For example, JavaScript typically relies on
a run-time environment such as a web browser, to provide
objects and methods by which applications can interact with
the environment, such as a webpage DOM (Document Object
Model). Engine 200 includes several components that work
together to process and execute a computer program written

US 9,207,914 B2

5

in a dynamic language, such as JavaScript code. When the
engine receives a file 202, such as when a web browser
downloads a JavaScript file, the contents of the file can be
provided to a parser 204 to verify syntactical correctness. In
one example, the parser 204 provides the one engine opera-
tion that applies to the entire file 202, and subsequent steps
can be performed individually on each function including the
global function. As a function is about to be executed the
parser 204 builds an abstract syntax tree (AST) 206 represen-
tation of the code. The AST 206 representation is provided to
a bytecode generator 208, which produces an intermediate
form, such as a function bytecode 210, that is suitable for
execution by an interpreter 212. In one example, the function
bytecode 210 is not suitable to be directly executed by a CPU.
Both the AST 206 and the function bytecode 210 may be
preserved in a memory such as memory 104, so they can be
reused on subsequent executions. The interpreter 212 is
invoked to run the function from the bytecode. As discussed,
execution of an application bytecode through an interpreter
can lead to performance inefficiencies over the execution of
machine code.

The engine 200 includes components to address the per-
formance inefficiencies of executing bytecode 210. For
example, as the interpreter 212 executes individual operations
it also collects information in a profile about the types of
inputs it encounters with the operations, keeps track of how
many times the function was called, and other information
useful for determining whether or how the bytecode 210 can
be compiled into machine code. As the number of calls to the
function reaches certain threshold, for example, the inter-
preter queues the particular function bytecode 214 for com-
pilation with a compiler such as a just-in-time (JIT) compiler
216. For example, ifa function is called a relatively few times,
such as one or two times, the corresponding bytecode may not
get compiled because the overhead expended in compilation
would outweigh any performance detriment from interpreta-
tion. In one example, the JIT compiler 216 can run on a
separate dedicated thread to reduce interference with script
execution. The JIT compiler 216 generates optimized
machine code 218 for each function in the compilation queue.
Once a function is compiled the availability of the machine
code 218 is signaled to the main thread. Upon the next invo-
cation ofthe compiled function, the entry point to the function
is redirected to the newly compiled machine code 218, and
execution 220 proceeds directly on a processor 222, suchas a
CPU. In one example, the machine code 218 can execute
concurrently with the bytecode 214.

The engine 200 can include other features. JavaScript is a
managed runtime in that memory management is hidden from
the developer and performed by an automatic garbage collec-
tor, which runs periodically to clean up any objects that are no
longer in use. The garbage collector can include a conserva-
tive, quasi-generational, mark and sweep, garbage collector
that does most of its work concurrently on a dedicated thread
to minimize script execution pauses that would interrupt the
user experience. The example architecture allows the engine
200 to start executing JavaScript code almost immediately
during page load. Also, during periods of intense JavaScript
activity, the engine can parallelize work and saturate multiple
cores by running script, compiling and collecting garbage
concurrently.

JIT compiler 216 generates profile-based, type-specialized
machine code 218. More particularly, the JIT compiler 216
generates machine code 218 that is tailored to objects of a
particular shape and values of a particular type. To emit the
appropriate machine code 218, information is provided to the
JIT compiler 216 to determine what types of input values to

10

15

20

25

30

35

40

45

50

55

60

65

6

expect. For example, before a property can be added to an
object, a determination is made as to whether the property is
writable on all prototypes of this object. Also, before a prop-
erty can be loaded from a prototype, a determination is made
as to whether the prototype has not been overwritten on a
more derived prototype in a chain. This information is not
available in the source code of a dynamic language so the
interpreter 212 is adapted to collect it at runtime in a runtime
profile. When a function is scheduled for compilation, the JIT
compiler 216 examines the runtime profile gathered by the
interpreter 212 and emits code 218 tailored to the expected
inputs based on assumptions.

While the interpreter 212 gathers information for the runs
it observes, the execution of the program can lead to runtime
values that violate assumptions made in the generated opti-
mized code. Thus, for every assumption made, the JIT com-
piler 216 emits a runtime check, or execution guard. If a later
execution results in an unexpected value, the check fails, and
execution bails out of the specialized machine code and is
continued in the interpreter. The reason for bailout, i.e., the
failed check is recorded, and the interpreter 212 collects addi-
tional profile information. The function can eventually be
recompiled with different assumptions.

Type checks or shape checks have been used as a form of
execution guards. In this approach, each object is assigned a
shape that encodes where in the memory of the object to
locate each property. A limitation of a shape check is it can
only verify the layout of an object. The shape check, for
example, does not confirm whether a given property of the
object is writable. Often, more than one such check must be
performed such as in loading a property from a prototype in
languages with prototypal inheritance.

FIG. 3 illustrates a process 300 for applying an execution
guard. An execution guard is created as a value stored in a data
structure and is representative of a given assumption, or
expectation, or a set of assumptions or expectations, of an
emitted specialized machine code at 302 based on the runtime
profile. When the emitted specialized machine code 218 is
later executed based on those assumptions, the value used in
the specialized machine code 218 is compared to the value
held in the corresponding execution guard to determine
whether the assumed condition is still valid at 304. The execu-
tion guard is invalidated if any of the assumed conditions are
changed. If the value representative of the expected condition
corresponds with the actual value in the specialized machine
code 218, the specialized machine code 218 is executed at
306. Alternatively, if the execution guard has been invali-
dated, the execution bails out of the specialized machine code
at 308. An execution guard may be invalidated as a result of
executing some other portion of a program, which alters one
or more of the conditions assumed by the specialize machine
code.

A recycler can be used to allocate guards in memory during
compilation, and the address of the data structure is hard
coded in the specialized machine code to allow fast access.
The recycler can allocate the objects to be the guards. In one
example, a predetermined slot, such as the first pointer-sized
slotof the object, is used as the guard value, and the rest of the
object contents can be irrelevant in the comparison. This
example provides for fast object construction where the con-
structor cache is used as an execution guard. Using a portion
of an object to hold the guard value reduces the number of
memory references used to check the guard during execution.
The expected value of a guard can be any value except for a
selected value indicating the guard is invalid. For example,
the value can be the expected type, and the selected value
indicating the guard is invalid can be zero.

US 9,207,914 B2

7

When the later executing code encounters the address of
the guard, the value in the executing code is compared to the
value at the address of the guard. A single guard can be used
to check multiple conditions or multiple properties. Accord-
ingly, a single comparison operation can be used to verify
assumptions about a list of properties. This can be useful
when adding several properties to an object, which is com-
mon in constructors.

If'the attributes of any ofthe properties change, the guard is
invalidated by writing a selected invalid value, such as zero, at
the address of the guard. Also, a guard can be invalidated
under other or additional circumstances regardless of whether
the circumstance is related to a property. For example, a guard
can be selectively invalidated when a constructor’s prototype
changes. The recycler can be used to track references to a
guard from any machine code that might still require the
guard. Invalidated guards remain in place for any code
actively executing or code that may still be executed that still
uses the guards, but no newly emitted code can refer to an
invalidated guard. Instead, a new guard is allocated by the
recycler for any newly generated code, such that an invali-
dated guard is never used by newly emitted code. This sim-
plifies the process of ensuring no code relying on now invalid
assumptions will execute. This also eliminates a demand to
proactively track such code and explicitly invalidate it via
some external means, which would be particularly cumber-
some for such code already on the call stack. Any existing
code will simply bail out once it encounters the invalidated
guard such as to handler routines that can resume interpreta-
tion.

A property guard can be implemented when loading a
property from a prototype. An efficient implementation of
loading a property from a prototype with a dynamic language
compiler is to hard code the prototype object from which to
load the property. A guard can be used to check if the object
still includes the property and the property has not been
deleted or to check if'the property has not been overwritten on
a more derived prototype. Additionally, the guard can deter-
mine if the type of the object having the hard coded prototype
is expected. One guard can be used to make all of these
determinations.

Further, a guard can be implemented when adding a prop-
erty or set of properties to an object. The guard can be used to
verify the type of the object is as expected and that all the
intended properties about to be added are writable on the
prototype chain. Again, a single guard can make these deter-
minations such as when the guard contains the expected type
of the object and is registered for invalidation if any of the
properties becomes read-only.

A guard can also be implemented when calling or entering
inline code of a method. For example, the guard can be used
to verify the type of the object owning the method, and that
the method on the object still matches the hard-coded method.
Again, this can be determined with a single guard check
where the value in the guard is the type of the object and can
be invalidated, such as set to zero, when the method is over-
written.

Still further, a guard can be implemented when construct-
ing an object. In this context, it is desirable to allocate an
appropriate amount of memory for the object, write proper-
ties to be added to predetermined slots, and determine
whether a constructor function’s prototype has not changed.
This can be achieved by registering the constructor cache
itself as a property guard for all properties being added by the
constructor. The guard can be explicitly invalidated if the
constructor’s prototype is changed. At runtime, a single check
is sufficient to achieve verify all of the above conditions.

10

15

20

25

30

35

40

45

50

55

60

65

8

Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
skill in the art that a variety of alternate and/or equivalent
implementations may be substituted for the specific embodi-
ments shown and described without departing from the scope
of'the present invention. This application is intended to cover
any adaptations or variations of the specific embodiments
discussed herein. Therefore, it is intended that this invention
be limited only by the claims and the equivalents thereof.
What is claimed is:
1. A processor-implemented method for executing a
machine code based on a dynamic language, including:
creating a guard as a value stored in a data structure and
representative of an expected condition for a reusable
portion of the machine code with the processor;

comparing the value representative of the expected condi-
tion to an actual value encountered later during execu-
tion of a portion of the machine code;

executing the machine code if the actual value corresponds

with the value representative of the expected condition;
and

invalidating the guard if the expected condition changes as

a result of executing the machine code.
2. The method of claim 1 wherein creating the guard
includes allocating an object to be the guard in memory.
3. The method of claim 2 wherein predetermined slot of the
object is used as the guard.
4. The method of claim 3 wherein remaining object con-
tents are irrelevant in the comparing of the value representa-
tive of the expected condition to an actual value encountered
later during execution of a portion of the machine code.
5. The method of claim 1 wherein the comparing of the
value representative of the expected condition to an actual
value encountered during execution of a portion of the
machine code permits simultaneous verification of multiple
expectations.
6. The method of claim 1 wherein invalidation of the guard
occurs if one or more of a plurality of expected conditions
changes.
7. The method of claim 1 wherein invalidating of the guard
includes selectively invalidating the guard.
8. The method of claim 7 wherein the invalidating of the
guard occurs when the prototype of a constructor changes.
9. The method of claim 1 wherein an invalidated guard is
never revalidated.
10. The method of claim 8 wherein no newly generated
machine code refers to a guard once it has been invalidated.
11. The method of claim 1 wherein the invalidated guard
remains in place for existing code still using the guard.
12. The method of claim 11 where existing code still using
the invalidated guard is on a call stack.
13. The method of claim 11 wherein machine code encoun-
tering the invalidated guard bails out to a handler routine.
14. A computer readable storage medium storing computer
executable instructions for controlling a computing device to
perform a method comprising:
creating a guard as a value stored in a data structure and
representative of an expected condition for a portion of a
machine code being compiled from a dynamic language;

comparing the value representative of the expected condi-
tion to an actual value encountered during execution of a
portion of the machine code;

executing the machine code if the actual value corresponds

with the value representative of the expected condition;
and

invalidating the guard if an expected condition changes as

a result of executing the machine code.

US 9,207,914 B2

9

15. The computer readable storage medium of claim 14
wherein the machine code is compiled from a byte code with
a just in time compiler.

16. The computer readable storage medium of claim 14
wherein creating the guard includes allocating, with a recy-
cler, an object to be the guard in memory.

17. The computer readable storage medium of claim 14
including discarding the invalidated guard from memory
when the invalidated guard is no longer reference by actively
executing code or code that may still be executed.

18. The computer readable storage medium of claim 14
wherein the invalidated guard remains in place for existing
code corresponding with the guard.

19. A computer readable storage medium storing computer
executable instructions for controlling a computing device to
perform a method comprising:

creating a guard as a value stored in a data structure and

representative of a set of expected conditions for a reus-
able portion of a machine code being compiled from a
dynamic language;

5

10

15

10

comparing the value representative of the expected condi-
tions to an actual value encountered later during execu-
tion of a portion of the machine code;

executing the machine code if the actual value corresponds
with the value representative of the expected condition;

invalidating the guard if the expected condition changes as
a result of executing the machine code; and

discarding the invalidated guard for newly combined code
wherein the invalidated guard remains in place for exist-
ing code corresponding with the guard.

20. The computer readable storage medium of claim 19
wherein the set of expected conditions includes one or more
of an expected type of an object and one or more of an
expected attributes of an object property.

